Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカ: Complete Species Profile and Guide

The Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカ (Todarodes pacificus (Steenstrup, 1880)) is one of the most fascinating mollusc species found in mrgid. This in-depth guide covers taxonomy, anatomy, habitat, behavior, diet, reproduction, conservation status, and practical notes for identification and research.

Quick Facts About the Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカ

AttributeDetails
Scientific NameTodarodes pacificus (Steenstrup, 1880)
Common NameCommon Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカ
FamilyOmmastrephidae
OrderOegopsida
ClassCephalopoda
Primary HabitatDiverse Marine Habitats
Geographic RangeMrgid

Taxonomic Classification and Scientific Background

The common flying squid; japanese flying squid; japanischer flugkalmar; japanse vliegende pijlinktvis; tài-píng-yáng-róu-yú; tài-píng-yáng-yóu; toutenon japonais; тихоокеанский кальмар; スルメイカ is placed within the phylum Mollusca. Taxonomy:

- Kingdom: Animalia - Phylum: Mollusca - Class: Cephalopoda - Order: Oegopsida - Family: Ommastrephidae - Scientific Name: Todarodes pacificus (Steenstrup, 1880)

Taxonomic notes: molluscan classification is based on shell morphology, radula structure, soft anatomy, and molecular data. Always verify synonyms in MolluscaBase or WoRMS.

Physical Characteristics and Identification

Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカ typically display molluscan body plan: head, visceral mass, and muscular foot (modified in cephalopods to arms/tentacles). The mantle secretes shell material where present; radula is used by many clades for feeding. Key identification features include:

- Shell shape, sculpture, and color (for shelled taxa) - Radula type and tooth arrangement (important for diet inference) - Soft-tissue characters (gill arrangement, mantle features) - Cephalopod-specific traits: chromatophores, beak, siphon for jet propulsion

Habitat Preferences and Geographic Distribution

Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカs occur in mrgid, usually in diverse marine habitats. Habitat selection depends on substrate, depth, salinity, temperature and food supply. Microhabitats include intertidal rocks, seagrass beds, sandy bottoms, coral reefs, and deep-sea vents.

Behavior and Ecology

The common flying squid; japanese flying squid; japanischer flugkalmar; japanse vliegende pijlinktvis; tài-píng-yáng-róu-yú; tài-píng-yáng-yóu; toutenon japonais; тихоокеанский кальмар; スルメイカ exhibits unique locomotion using its muscular foot and mantle cavity for jet propulsion. Behavioral highlights:

- Locomotion: foot gliding, burrowing, or cephalopod jetting - Foraging strategies: grazing, filter-feeding, predation with radula/venom, scavenging - Defensive behavior: shell withdrawal, crypsis, ink release (cephalopods), venom in some gastropods

Diet and Feeding Ecology

Diet varies by clade: many gastropods graze on algae, bivalves filter phytoplankton and detritus, and cephalopods are active predators. Feeding mechanics often correlate with radula morphology or specialized appendages/venom. Trophic role: primary consumer, predator or scavenger.

Reproduction, Development, and Life Cycle

Molluscs show diverse reproductive strategies: broadcast spawning with planktonic trochophore/veliger larvae, brooding, or direct development. Cephalopods typically have complex mating behaviors and some brood/guard eggs. Reproductive timing often links with seasonal cycles and temperature.

Conservation Status and Threats

Conservation concerns for common flying squid; japanese flying squid; japanischer flugkalmar; japanse vliegende pijlinktvis; tài-píng-yáng-róu-yú; tài-píng-yáng-yóu; toutenon japonais; тихоокеанский кальмар; スルメイカs include overharvesting (food & aquarium trade), habitat loss, pollution, and ocean acidification which impairs shell formation. Assess status via IUCN, national red lists, and targeted monitoring. Mitigation: MPAs, sustainable harvest, pollution reductions, aquaculture best-practice.

Ecological Importance and Ecosystem Services

Molluscs regulate algal communities (grazers), filter water (bivalves), and form prey base for fish, birds and mammals. Shell accumulations form substrates and beaches. Cephalopods are important mid-trophic predators with fast life-histories influencing prey populations.

Frequently Asked Questions About Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカs

What is a Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカ?

The common flying squid; japanese flying squid; japanischer flugkalmar; japanse vliegende pijlinktvis; tài-píng-yáng-róu-yú; tài-píng-yáng-yóu; toutenon japonais; тихоокеанский кальмар; スルメイカ (Todarodes pacificus (Steenstrup, 1880)) is a mollusc belonging to the Ommastrephidae family and the Oegopsida order. Molluscs are soft-bodied animals often protected by shells, with diverse feeding strategies and complex life cycles.

What is the scientific name of the Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカ?

The scientific name is Todarodes pacificus (Steenstrup, 1880). This binomial follows Linnaean taxonomy.

Where do Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカs live?

Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカs are found in mrgid. Distribution is driven by substrate, temperature, salinity, and food availability.

What do Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカs eat?

Diets vary widely: grazing on algae, filter-feeding plankton, predation using radula/venom, or scavenging.

How big is a Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカ?

Size ranges widely among molluscs, from minute gastropods to giant cephalopods several meters long.

How do Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカs reproduce?

Molluscs reproduce by external spawning or internal fertilization; many have trochophore/veliger larval stages.

Are Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカs endangered?

Many species face threats like overharvesting, habitat loss, and ocean acidification affecting shell formation.

What role do Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカs play in ecosystems?

Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカs serve as grazers, filter feeders, predators, and prey, significantly shaping marine food webs.

What unique adaptations do Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカs have?

Adaptations include the radula, shell biomineralization, chromatophores (cephalopods), and ink/venom in some species.

How are molluscs studied and conserved?

Conservation uses monitoring, protected areas, regulated harvest, aquaculture and research on acidification resilience.

Data Sources and References

This profile was compiled from primary species records and scientific literature.

Primary source: GBIF / WoRMS / MolluscaBase Citation: Last Updated: 2025-10-22T11:01:58Z Taxonomic verification recommended via MolluscaBase, WoRMS, and GBIF.

Conclusion: Protecting Common Flying Squid; Japanese Flying Squid; Japanischer Flugkalmar; Japanse Vliegende Pijlinktvis; Tài-Píng-Yáng-Róu-Yú; Tài-Píng-Yáng-Yóu; Toutenon Japonais; Тихоокеанский Кальмар; スルメイカs

The common flying squid; japanese flying squid; japanischer flugkalmar; japanse vliegende pijlinktvis; tài-píng-yáng-róu-yú; tài-píng-yáng-yóu; toutenon japonais; тихоокеанский кальмар; スルメイカ (Todarodes pacificus (Steenstrup, 1880)) showcases molluscan diversity and ecological importance across mrgid. Protecting its habitat and understanding life-history traits will benefit biodiversity and fisheries sustainability.

Additional Research and Notes

Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.

Additional Research and Notes

Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.

Additional Research and Notes

Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.

Additional Research and Notes

Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.

Additional Research and Notes

Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.

Additional Research and Notes

Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.

Additional Research and Notes

Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.