Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razor (Ensis magnus) - Facts & Information
Ensis magnus Schumacher, 1817
Scientific Classification
Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razor: Complete Species Profile and Guide
The Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razor (Ensis magnus Schumacher, 1817) stands out as an extraordinary member of the mollusc phylum found in various ocean regions worldwide. This in-depth guide covers taxonomy, anatomy, habitat, behavior, diet, reproduction, conservation status, and practical notes for identification and research.
Quick Facts About the Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razor
| Attribute | Details |
|---|---|
| Scientific Name | Ensis magnus Schumacher, 1817 |
| Common Name | Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razor |
| Family | Pharidae |
| Order | Adapedonta |
| Class | Bivalvia |
| Primary Habitat | Diverse Marine Habitats |
| Geographic Range | Various Ocean Regions Worldwide |
Taxonomic Classification and Scientific Background
The buet knivmusling; couteau; couteau arqué; grote zwaardschede; kapad knivmussla; schwertförmige scheidenmuschel; sword razor is placed within the phylum Mollusca. Taxonomy:
- Kingdom: Animalia - Phylum: Mollusca - Class: Bivalvia - Order: Adapedonta - Family: Pharidae - Scientific Name: Ensis magnus Schumacher, 1817
Taxonomic notes: molluscan classification is based on shell morphology, radula structure, soft anatomy, and molecular data. Always verify synonyms in MolluscaBase or WoRMS.
Physical Characteristics and Identification
Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razor typically display molluscan body plan: head, visceral mass, and muscular foot (modified in cephalopods to arms/tentacles). The mantle secretes shell material where present; radula is used by many clades for feeding. Key identification features include:
- Shell shape, sculpture, and color (for shelled taxa) - Radula type and tooth arrangement (important for diet inference) - Soft-tissue characters (gill arrangement, mantle features) - Cephalopod-specific traits: chromatophores, beak, siphon for jet propulsion
Habitat Preferences and Geographic Distribution
Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razors occur in various ocean regions worldwide, usually in diverse marine habitats. Habitat selection depends on substrate, depth, salinity, temperature and food supply. Microhabitats include intertidal rocks, seagrass beds, sandy bottoms, coral reefs, and deep-sea vents.
Behavior and Ecology
The buet knivmusling; couteau; couteau arqué; grote zwaardschede; kapad knivmussla; schwertförmige scheidenmuschel; sword razor demonstrates remarkable adaptations including a specialized radula for feeding. Behavioral highlights:
- Locomotion: foot gliding, burrowing, or cephalopod jetting - Foraging strategies: grazing, filter-feeding, predation with radula/venom, scavenging - Defensive behavior: shell withdrawal, crypsis, ink release (cephalopods), venom in some gastropods
Diet and Feeding Ecology
Diet varies by clade: many gastropods graze on algae, bivalves filter phytoplankton and detritus, and cephalopods are active predators. Feeding mechanics often correlate with radula morphology or specialized appendages/venom. Trophic role: primary consumer, predator or scavenger.
Reproduction, Development, and Life Cycle
Molluscs show diverse reproductive strategies: broadcast spawning with planktonic trochophore/veliger larvae, brooding, or direct development. Cephalopods typically have complex mating behaviors and some brood/guard eggs. Reproductive timing often links with seasonal cycles and temperature.
Conservation Status and Threats
Conservation concerns for buet knivmusling; couteau; couteau arqué; grote zwaardschede; kapad knivmussla; schwertförmige scheidenmuschel; sword razors include overharvesting (food & aquarium trade), habitat loss, pollution, and ocean acidification which impairs shell formation. Assess status via IUCN, national red lists, and targeted monitoring. Mitigation: MPAs, sustainable harvest, pollution reductions, aquaculture best-practice.
Ecological Importance and Ecosystem Services
Molluscs regulate algal communities (grazers), filter water (bivalves), and form prey base for fish, birds and mammals. Shell accumulations form substrates and beaches. Cephalopods are important mid-trophic predators with fast life-histories influencing prey populations.
Frequently Asked Questions About Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razors
What is a Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razor?
The buet knivmusling; couteau; couteau arqué; grote zwaardschede; kapad knivmussla; schwertförmige scheidenmuschel; sword razor (Ensis magnus Schumacher, 1817) is a mollusc belonging to the Pharidae family and the Adapedonta order. Molluscs are soft-bodied animals often protected by shells, with diverse feeding strategies and complex life cycles.
What is the scientific name of the Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razor?
The scientific name is Ensis magnus Schumacher, 1817. This binomial follows Linnaean taxonomy.
Where do Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razors live?
Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razors are found in various ocean regions. Distribution is driven by substrate, temperature, salinity, and food availability.
What do Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razors eat?
Diets vary widely: grazing on algae, filter-feeding plankton, predation using radula/venom, or scavenging.
How big is a Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razor?
Size ranges widely among molluscs, from minute gastropods to giant cephalopods several meters long.
How do Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razors reproduce?
Molluscs reproduce by external spawning or internal fertilization; many have trochophore/veliger larval stages.
Are Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razors endangered?
Many species face threats like overharvesting, habitat loss, and ocean acidification affecting shell formation.
What role do Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razors play in ecosystems?
Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razors serve as grazers, filter feeders, predators, and prey, significantly shaping marine food webs.
What unique adaptations do Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razors have?
Adaptations include the radula, shell biomineralization, chromatophores (cephalopods), and ink/venom in some species.
How are molluscs studied and conserved?
Conservation uses monitoring, protected areas, regulated harvest, aquaculture and research on acidification resilience.
Data Sources and References
This profile was compiled from primary species records and scientific literature.
Primary source: GBIF / WoRMS / MolluscaBase Citation: Last Updated: 2025-10-22T11:01:58Z Taxonomic verification recommended via MolluscaBase, WoRMS, and GBIF.Conclusion: Protecting Buet Knivmusling; Couteau; Couteau Arqué; Grote Zwaardschede; Kapad Knivmussla; Schwertförmige Scheidenmuschel; Sword Razors
The buet knivmusling; couteau; couteau arqué; grote zwaardschede; kapad knivmussla; schwertförmige scheidenmuschel; sword razor (Ensis magnus Schumacher, 1817) showcases molluscan diversity and ecological importance across various ocean regions worldwide. Protecting its habitat and understanding life-history traits will benefit biodiversity and fisheries sustainability.
Additional Research and Notes
Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.
Additional Research and Notes
Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.
Additional Research and Notes
Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.
Additional Research and Notes
Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.
Additional Research and Notes
Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.
Additional Research and Notes
Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.
Additional Research and Notes
Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.
Additional Research and Notes
Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.
Additional Research and Notes
Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.
Additional Research and Notes
Further research into morphology, population genetics, and responses to ocean change improves conservation planning. Studies of shell biomineralization and radula biomechanics inform both taxonomy and material-science inspired solutions. Long-term monitoring and citizen-science contributions (e.g., shell surveys, diver observations) are valuable.